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Dilute aqueous solutions of long alcohol chains were recently found to cause a 
quadratic dependence of surface tension on the temperature without affecting other 
bulk properties of the liquid: g = ao+ctQ(T- T,,)', aQ > 0. The impact of such 
Marangoni instability on the behaviour of a thin liquid layer is studied in this work. 
We derive an equation describing a nonlinear spatiotemporal evolution of a thin film. 
The behaviour of the perturbed film in the absence of gravity, critically depends on 
whether the temperature T,,, yielding a minimal surface tension, is attained on the 
surface of the film. When this is the case, a qualitatively new behaviour is observed: 
perturbations of the film interface may evolve into continuous steady patterns that do 
not rupture. Otherwise, the observed patterns due to the linear and quadratic 
Marangoni effects are qualitatively similar and result in the rupture of the film into 
separate drops. 

1. Introduction 
A liquid film at rest on a horizontal plane, exposed at its free surface to the ambient 

gas, when subjected to a transverse temperature gradient, may undergo a transition 
into a convective motion. In the absence of gravity, the thermocapillarity (also known 
as the Marangoni effect), induces destabilizing surface shear stresses which can 
overcome the stabilizing action of fluid viscosity and thermal conductivity. 

In almost all studied cases of two fluids (liquid-liquid or liquid-gas) in contact 
(Pearson 1958; Davis 1987), the dependence of surface tension on the temperature was 
approximated by a linearly decreasing function of the temperature : 

where go is the surface tension at the reference temperature & and aL is the surface 
tension gradient measured in units of N(m K)-l. This type of variation has a 
considerable empirical support and is in tandem with linear transport theory. It 
predicts surface tractions to be directed from the locally hottest spot on the free surface 
of the film toward the locally coldest one. This is the essence of the linear Marangoni 
effect (LM). However, in principle, nothing precludes a nonlinear temperature 
dependence, and, in fact, other types of surface-tension dependence on temperature 
have recently been measured (Guyon & Pantaloni 1980; Legros, Limbourg-Fontaine 
& Petre 1984). Binary metallic alloys were found to exhibit a monotonically increasing 
- rather than decreasing - linear dependence (Guyon & Pantaloni 1980), aL < 0. It was 
also found (Legros et al. 1984) that dilute aqueous solutions of long alcohol chains 
show a non-monotone dependence of surface tension on the temperature. In such 

a = g0-aL(T- &), EL > 0, (1) 
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solution, bulk properties like those of density and viscosity do not change - the surface 
tension of the dilute aqueous solution was found to have a well-pronounced minimum 
that can be approximated fairly well by the quadratic expression 

0- = 5,+aQ(T-Q2,  aQ > 0, (2) 

where T, is the temperature at which surface tension attains its minimum value, cr,,, and 
aQ is the value associated with the curvature of the surface-tension variation with 
temperature, measured in units of N m-l KW2. While some preliminary experiments 
and analytical studies were recently reported (Legros 1986; Limbourg & Georis 1989; 
Cloot & Lebon 1986; Gupalo & Ryazantsev 1989; Gupalo, Ryazantsev & Skvortsova 
1990), the nonlinear dependence of surface tension on the temperature requires a full 
nonlinear treatment and is still very much a terra incognita. Linear stability analysis 
has revealed (Cloot & Lebon 1986) that in the case of large Prandtl number, steady 
patterns in the form of rolls, rectangles and hexagons are admissible and the latter 
planform is stable. Several self-similar solutions were numerically calculated for the 
temperature gradient imposed along the free surface of the film (Gupalo & Ryazantsev 
1989; Gupalo et al. 1990). 

To understand the implication of a quadratic surface-tension dependence (2) on the 
temperature, a consistent full nonlinear study is undertaken in the present work. We 
shall formulate, derive and then follow the nonlinear spatiotemporal evolution of a 
thin liquid layer due to a nonlinear thermocapillary effect. In a natural extension of the 
linear Marangoni (LM) case, we shall refer to this mechanism as to the quadratic 
Marangoni (QM) instability. 

The essence of our studies can be described as follows; we show that the QM 
instability enables an existence of new stable steady states which in variance with the 
conventional Marangoni induced patterns, are continuous and do not rupture. These 
states are possible when temperature ranges of films centre around the minimum peak 
of surface tension where the quadratic effect is most pronounced. On the monotone 
parts of a(T), the surface-tension temperature curve, the observed patterns are similar 
to the LM induced flow. Nevertheless, the quadratic effect introduces a change in 
stability threshold. Thus the actual physical parameters which cause a specific pattern 
to emerge do change. We will show instances where the stability properties of the QM- 
and LM-induced flows are related, which is to say that QM unstable(stab1e) states are 
either LM unstable(stab1e) or to the contrary, opposite relations follow. In other 
parameter ranges definite relations cannot be inferred and stability or instability of LM 
flow cannot be related to QM instability. 

The possibility of endowing surface tension with a quadratic temperature dependence 
enables one to envisage potential applications where it might be an advantage to induce 
such a dependence artificially. Positioning of the temperature peak at a specific 
temperature may enable us to assure or to preclude the formation of a specific pattern. 

In the next section we formulate and derive our model. In $ 3  we present numerical 
results of a two-dimensional version of our problem. The summary follows in 94. 

2. Formulation of the model 
Consider a thin incompressible liquid layer lying on a horizontal plane held at the 

uniform temperature T,, with free surface open to ambient air (at temperature T,  and 
pressure pa) .  Surface tension cr is assumed to have a quadratic dependence on the 
temperature T (equation (2)). The thermal diffusivity, 7, viscosity, p, and density, p, of 
the fluid are assumed to be temperature-independent. 
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We begin with equations governing the incompressible flow 

( 3 )  

V * V  = 0, T + v * V T =  qV2T. (44  b) 

o ,+(v .V)v  = - -Vp+g+-V%,  1 P 
P P 

The notation is standard : v = {u l ,  u,, u,} and p are the fluid velocity and the pressure, 
respectively. 

The relevant boundary conditions are : 
(i) On the plane x ,  = 0 a no-slip condition is imposed on the velocity, and a uniform 

temperature is specified: 
v = O ,  T = T , .  (5 )  

(ii) On the free film surface located at x ,  = H(x,, x,, t ) ,  we require 
(a) balance of stresses 

- ( p - p a )  n + 2,uD.n = 2aKn + V ,  u, (6) 

(b) convective heat transfer condition : 

aT 
-+q(T- an q) = 0. 

The location of the interface is determined via the kinematic condition 

aH 
-+v .VH* = 0. 
at 

(7) 

In equations (6)  and (7), D is the stress tensor, K is the mean interfacial curvature, q 
is the ratio between the heat transfer rates via convection and the conduction, 
n is the normal unit vector, V ,  is the surface gradient at the interface, and 

We introduce the longitudinal (transverse) lengthscale l(a) and a characteristic 
velocity U (to be determined in a moment) and define the following dimensionless 
quantities: 

H* = - X ,  + H(xl ,  x,, t ) .  

a being the mean film thickness and 

T- and T+ are, respectively, the lowest and highest temperatures at the film boundaries, 
T+ = max(T,, T,), T = min(T,, T,). 

1 is essentially a thin film 
approximation and thus follows closely the method used in (Burelbach, Bankoff & 
Davis 1988; Oron & Rosenau 1992). The reference velocity is chosen as U = aU, with 
U, defined via 

The derivation is based on scaling (9) and with 6 

U, = &(T,- a: T), = Ma,-, 7 
2P a 
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where Ma, is a nonlinear Marangoni number defined for the QM to be 
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The other dimensionless quantities used are similar to the ones used in (Oron & 
Rosenau 1992), the Reynolds, Prandtl, Biot, Weber and Bond numbers are introduced 
as follows: let v = p / p  be the kinematic viscosity of the fluid, then we define Re = 
Uoa/v ,  Pr = v/u$, B = aq, S = ~o/ ( ,uUo) ,  G = ga2/(3Uo v). Note that in our derivation 
Re = O(l), Pr = 0(1), B = 0(1), G = 0(1), and S = se?, with s = O(1). Therefore for 
the Marangoni number we have Ma, = Re Pr = O( 1). 

Applying the thin-film approximation (9)-(10) to (3)-(8) we obtain for the pressure, 
temperature and velocity components of the flow field, respectively, 

B(8, - 82) z 
1+Bh ’ 

P = G(h-z)-sV2h, 8 = 8,- 

u = Cx Q,(z) + zSZ,, 0 = C, Q,(z) +zag, 
w = -$z2Vh-VC- Q,(z) V2Z-$~’V.(VQ). 

(124 

(12b) 
Here, the subscripts x,y denote the respective partial derivatives, V = (az, a,), C = 
- Gh +sV2h, Q,(z) = ihz2 -iz3, Q,(z) = Q;(z), SZ = (8, + (8, - 8J/( 1 + Bh) - 8,), and 
8, is the interface temperature given via 

with Ot = 8(T = T )  i = 1,2, see (9b), and 8, = 8(T = T,) being the dimensionless %I 
temperature at which the surface tension obtains its minimal value. Two comp- 
lementary cases will be considered : 

case I: 8, = 1, 0, = 0 
case 11: 8, = 0, 8, = 1 

liquid heated from the bottom, 

liquid cooled from the bottom. 

The first (second) case states that the bottom temperature is higher (lower) than that 
of the ambient air. 

The motion in the two-dimensional liquid layer in the (x, ,$-plane (v = 0, tlg = 0) as 
given by (12) can be presented in terms of the streamfunction $ 

with 

$ = s ( ~ - ~ ) h , , , + B z 2 ( 8 - ~ )  h X  

1+Bh (l+Bh)” 

= ro3 1 - do, case 11. I’ 

In (1 1)-(14), all flow quantities are expressed in terms of dimensionless thickness of the 
film h(x, t). The expansion yields a consistency relation for h(x, t )  which renders the 
spatiotemporal evolution of QM induced variations in film thickness that evolve 
according to 

h,.+V-{[ - G h 3 + f ~ ~ ~ ] V h } + $ A 7 . [ h 3 V ( V 2 h ) ]  = 0, 

1 
1+Bh‘ 

D ED,, = 6-- where 
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FIGURE 1. Sketch of the quadratic dependence of surface tension on temperature. The temperatures 
T ,  T, are represented respectively by the points a, b in case (a), c, d in case (b) and b, c in case (c). 

Once h(x,  t )  is determined, all other flow quantities follow directly from (1 1)-(14). As 
a consequence of the scaling (9a) the basic state is given as h = 1. 

Note the three different domains of the parameter B0, shown on figure 1 relevant for 
the study of the QM instability: 

To understand the changes caused by the nonlinear dependence of surface tension 
on the temperature, it is imperative to compare our problem with one which is similar 
but in which the conventional, linear, dependence on temperature is assumed. 
Recently, using a similar setting, we derived such an equation which describes the 
evolution of a film induced by the conventional LM instability (Oron & Rosenau 
1992). In form it is similar to (15) but 

- 1, case I, 
+ 1, case 11. 

D = D,, = -im, m = { 
In case I, (1 5) together with (16 b) also appeared in Burelbach et al. 1988 (their equation 
(5.18)) and in Tan, Bankoff & Davis (1990) (their equation (16)). Since in both 
problems a different Marangoni number is used to define the characteristic velocity, it 
implies that the value U, used for normalization is different in both problems. As is 
typical of the asymptotic approach, the three-dimensional problem was effectively 
reduced to a two-dimensional problem. 

Under normal conditions the effect due to gravity dominates thermocapillarity. To 
stress the essential differences between the linear and quadratic thermocapillarity, we 
focus on the weightless case and set G = 0. It is seen from (15k(16) that the fluid layer 
undergoes QM instability for 6 > 1 and LM instability for m < 0 if the periodic box is 
adequately large and the film thickness does not exceed a certain critical, &-dependent 
value in the QM case. 
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FIGURE 2. The dimensionless cutoff wavenumber k* as a function of dimensionless film thickness @ 
for the linear Marangoni (LM) and the quadratic Marangoni (QM) instabilities for various values of 
parameter 8. The wavenumbers of the unstable modes are located under the corresponding curve. The 
line k = k,  shows the wavenumber of the fundamental mode which can be accommodated in a 
domain of size L. The value of k ,  shown corresponds to L = 16n. 

The normalization g5 = Bh, 7 = B7*/s, (x,y) = (s/B2)l”([,  (D then reduces (15) and 
(16) into 

@ T + V . [ W  D@2 V# I +p [g5”(V”)] = 0, 

1 
where D = D,,  = 6-- v = (36, a,), 0 < 5 < L,, 0 < 5 < L,. 

l + # ’  

Introducing perturbations of the normal form, exp (ik,[+ ik,[+ h7), around the 
uniform state, # = @ = B > 0 (recall that in the basic state h = 1, therefore @ = B), 
yields the dispersion relation 

D(@) is either DQ,  or D,,, and k2 = ki + kt. The cutoff stability wavenumber, k*, in 
both cases is given as 

The k < k* disturbances are unstable, which is typical of all longwave instabilities. 
Clearly, for such instability to materialize, the periodic domain must be large enough 
to accommodate at least the longest (the smallest k) unstable mode. Figure 2 shows the 
cutoff wavenumber, k*, for the QM with several values of 6. The LM curve was 
calculated using (1 8) assuming that the size of the one-dimensional periodic domain is 
fixed. The value k = k, corresponds to the fundamental wave which is accommodated 
in the considered domain taking its size L = 1 6 ~ .  The unstable spectrum of the system 
is located under the curves shown. As it is seen from figure 2, the QM instability of a 
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film of a uniform thickness @, is triggered in the case (c), (0 < 6 < 1) for values of @ 
which are between the two intersection points of the line k = k, with the corresponding 
curve. The necessary condition for QM instability follows from (19), 

1-6 
@ > -  

8 ’  

and does not depend on the direction of the vertical temperature gradient. This is one 
of the differences between the LM and QM instabilities. Recall that the LM instability 
arises for any film of sufficiently small thickness (Davis 1987; Oron & Rosenau 1992). 
It follows from (20) that the layer is stable if 6+ 0 + , corresponding to T 1‘ T, for the 
case I, and T+ J, T, for the case 11. 

If the domain size is sufficiently large it follows from (18) and figure 2 that S > 1 
(cases I(a) and II(b)) implies QM instability when the thickness of the layer does not 
exceed a value given by the point of intersection of the line k = k, with the 
corresponding curve. Qualitatively these two cases resemble the conventional LM 
instability which occurs when the product (T ,  - TJ(a+ - a-) is negative. The latter is 
described by (15) and (16b). Similarly, S < 0 (cases I(b) and II(a)) implies stability of 
the film. 

Comparing the cutoff wavenumbers in (19), we find that for S < a, k& < kzn, for 
any amplitude @. This means that when 6 < +, a QM unstable state is also LM 
unstable. For 6 < a there is also a range of @ which is QM stable but LM unstable. This 
suggests a number of possible technological applications which will be discussed in $4. 
Now if 6 > i, LM instability implies QM instability for any @. In contradistinction to 
the other case, for 6 > i there is a range of amplitudes @where the flow is QM unstable 
but is LM stable. 

Equation (17) can be rewritten into a Cahn-Hilliard type form 

Here V($) is the potential energy 

SZ is a either unbounded or a periodic domain and A is a constant of integration. Note 
that F is a decreasing function along any trajectory: 

therefore F is a Lyapunov functional for (21). Steady states of the system, therefore, 
if exist, are solutions of the equation 

dV 
V2$ + 3 - = const, 

d$ 
and in the one-dimensional case the latter can be recast into 

4: + V($) = const. 

We have to comment on the presence of an integration constant A in the potential 
energy (22). A typical potential energy is usually at least a quadratic function in $ for 
large arguments, and addition of a linear part amounts only to shift in the frame of 
reference. However, in the present problem without A ,  the potential energy becomes 
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linear for large argument and thus deformable under linear shifts. Indeed taking A > 
deforms the asymptotic behaviour of the. original potential energy. The new potential 
energy generates a new class of equilibria. 

Similar results were obtained in the LM case (Oron & Rosenau 1992; Deissler & 
Oron 1992) for the potential V($) given as 

where y is a gravity parameter. 
We recall that if a system has a Lyapunov functional bounded from below (a free 

energy functional decreasing along all trajectories) any initial data evolves into a steady 
state. We focus here on the existence of continuous steady periodic (CSP) states, i.e. 
states with non-vanishing amplitude everywhere. The CSP states are admissible if both 
of the following conditions are met : (a) the potential energy, V($), associated with the 
Lyapunov functional is bounded from above; (b) there exists a local minimum of the 
potential energy at $ =k 0. Figure 3 displays the admissible curves of the potential 
energy, V($), (see (22)). Our studies show that the conditions (a), (b) are satisfied 
simultaneously if 0 < S < 1 and AS) < A < i, AS) being a function of 6, see curves 3, 
4 corresponding to A = 0.48, 0.49, respectively. CSP states exist in the valleys of these 
curves (marked by the dashed lines). These potential energy curves qualitatively 
resemble those found for films flowing under the influence of both destabilizing gravity 
and LM-thermocapillarity (Oron & Rosenau 1992; Deissler & Oron 1992). Curves 1, 
2,5,6 of figure 3 do not satisfy one of the conditions (a), (b) and therefore the existence 
of CSP states is not assured. A similar situation is found also for the LM case without 
gravity. Our numerical studies of this case (Oron & Rosenau 1992) revealed that the 
evolution of small-amplitude initial data lead ultimately to the rupture of the film, thus 
the CSP states do not exist. This conclusion holds also for the QM case with 181 > 1. 
We emphasize that if condition (b) is not met, then the potential energy attains its 
minimal value at zero, $ = 0. This in turn implies that periodic steady states if they 
exist are not continuous, i.e. they are ruptured. 

As we have seen in figure 3 the topological structure of the potential energy curves, 
and therefore the existence of the CSP states, depends on the values of 6 and A. The 
parameter 6 is defined through relevant temperatures and thus may be viewed as a 
control parameter. However, the value of A reflects, among other things, the impact of 
boundary conditions on the dynamics and in general cannot be predetermined. The 
choice of various values of A in figure 3 is intended to show the main possible 
topological structures of the potential energy, without stating how such effective 
potentials can be materialized. Therefore, the quest for non-ruptured steady states, 
living in the valleys of the potential energy, can, at least at this stage of our 
understanding, be resolved only by relying on the results of numerical experiments. 

Conservation laws 
A :  the total mass of the film is conserved 

&JQ$d12 = 0. 

B:  multiply (17) by $-2 and integrate over l2 with periodic boundary conditions to 
obtain 
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FIGURE 3. The potential energy V($) for 6 = 0.5 and various values of A :  1 - A  = 0.25, 2-  A = 0.45, 
3 - A  = 0.48, 4-A = 0.49, 5 - A  = 0.5, 6-A = 0.55. Steady states reside in the valleys of the 
potential energy curves designated by the dashed lines. 

3. Numerical studies 

describes a two-dimensional flow, namely 
Our numerical efforts focused on the one-dimensional version of (17) which 

Equation (27) was solved numerically in a periodic domain 0 < 6 < L. We used 
periodic boundary conditions and the initial condition 

= @ + I9 sin (2ntlL) with 19 4 1. 

Note that the two-dimensional flow described by (27) is the least stable among 
general three-dimensional configurations. This property is typical for long-wave 
instability phenomena : in three dimensions, the presence of the krcomponent of the 
wavevector k increases the magnitude of k and thus narrows the unstable band. A 
similar effect can be achieved through the reduction of the size of the transverse 
periodic box. 

The emerging solutions whether linearly stable or not, appear always to be globally 
bounded. Globally unbounded solutions do not arise. This is consistent with a 
conjecture stated for a generalized Cahn-Hilliard equation (Hocherman 2% Rosenau 
1993) of the form: 

= { M$) 2 [QM - R($) 4“1} (28) 
a a 

namely, if lims+m lQ(s)/sR(s)l = 0, then the solutions of (28) with reasonable boundary 
conditions are globally bounded. With M ( 4 )  = $3 and R($) = f we see that (27) 
becomes a particular case of (28) if we take 
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FIGURE 4. The interfacial shape (time 7 = 40000) shown here evolved from initial perturbation of the 
uniform state @ = 2, 9 = 0.01 for S = 0.5, L = 1 6 ~ .  This shape is very close to the terminal stable 
steady state solution of (27) for the quadratic Marangoni (QM). Streamlines of the flow field (dashed 
lines) are calculated via (30). The periodic domain shown consists of four convective cells contained 
between the extremal points of the interface and the [(T,) points which are points of the minimal 
surface tension at T = 5. The arrows indicate the direction of the flow at c(5) which are stagnation 
points. 

A detailed numerical study of (27) is not intended in the present paper. We note, 
however, that the few tens of numerical experiments with a fixed L = 16n, show that 
beside a rupture of the film into separate drops caused by a small perturbation of the 
film, steady states may emerge after a long evolution. In our numerical study, steady 
states were found for 6 < 0.5 (see figure 4). Figure 4 displays the steady interfacial 
shape which results from the evolution due to the QM instability. Here 6 = 0.5, 9 = 
0.01, Q, = 2 and L = 16n. For S 2 0.6 a film rupture similar to the one emerging in the 
conventional LM flow arises (see figure 5). 

To elucidate the qualitative difference in interfacial patterns which may arise owing 
to the QM and LM instabilities, we followed the spatiotemporal behaviour of the 
liquid film of a given thickness at temperatures of = 45 "C, T, = 35 "C when the fluid 
is alternatively pure water (undergoing the LM instability) and a dilute aqueous 
solution of n-heptanol (undergoing the QM instability), both in contact with air at their 
free surface. In order to calculate the dimensionless parameters governing the 
evolution of the film we use the following physical data for the substances of interest: 
for a pure water: aL = 0.15 x N (mK)-l, go = 69.5 x lop3 N m-l. For an aqueous 
solution of n-heptanol (Legros et al. 1984): ag = 4.4 x lop6 N rn-l K-2, g,, = 
3.53 x N m-l, = 40 "C. The physical properties of the bulk are only slightly 
modified by small quantities of the solute (Legros et al. 1984) and the main changes are 
limited to the interfacial properties. We also assume that the values of the Biot number 
are identical in both cases. The corresponding values of the relevant parameters are: 
for the LM case (water) U, x 1.50 m s-l, S x 46.33, while for the QM case (water with 
n-heptanol) U, x 0.22 m s-l, S x 16.05,S = 0.5. (Recall that the difference in U, is due 
to the different Marangoni numbers used to define U,.) The rescaled sizes of the 
periodic domain in both cases are taken as L = 9.416n and L = 16n for the LM and 
QM, respectively, both corresponding to the specified physical size of the periodic box 
La S1''/B. (The domain size L = 16n for the QM case is close to the fastest wavelength. 
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FIGURE 5. Spatiotemporal evolution of the interface toward rupture of the film as predicted by (27) 
for the quadratic Marangoni (QM) instability with 6 = 0.9, L = 16n, Q, = 2 and 9 = 0.01, 7 = 1600. 
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FIGURE 6. Spatiotemporal evolution of the interface toward rupture of the film owing to the 

linear Marangoni (LM) (equations (17), (16b)) with L = 9.416x, Q, = 2, m = - 1 and 6 = 0.01 

For the LM, the properly rescaled value is L = 9.416~. The rescaled dimensionless 
thickness of the film is assumed to be @ = 2. The evolutions of the QM and LM 
instabilities are shown in figures 4 and 6, respectively. The QM leads to a stable steady 
state which preserves the continuity of the film, but the LM results in a rupture of the 
film. 

In the absence of gravity the LM instability always causes the film to rupture. This 
is consistent with a criterion (Tan et al. 1990), according to which continuous steady 
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FIGURE 7. Typical flow field for transient states in the LM and QM (either to case (a) or (b), IS1 > 
1) induced flows. The flow is directed from the thinner part of the film to the thicker one and this leads 
to amplification of the perturbations and to the rupture of the film. The graphs shown (the dashed 
lines are streamlines) are obtained for the QM instability with S = 1.25, @ = 2 , 9  = 0.01 and L = 16n. 
(a) T = 590, (b) 7 = 730. 

profiles of a liquid layer can be sustained when a parameter inversely proportional to 
the acceleration due to gravity g is smaller than a certain critical value. In the absence 
of gravity that parameter is always infinite, and therefore the film ruptures. 

Streamlines of the steady flow were calculated for 6 = 0.5 and are displayed in figure 
4. In expression (14) for the rescaled stream function we eliminate using (27) the third 

where 2 = Bz. It is clear that the convective cells are constrained between the surfaces 
2 = 0,Z  = q5, and vertical planes corresponding to the extrema of the interface and to 
the points at the interface where q5 = (1 - 6)/6. The number of convective cells within 
the periodic domain is four times the number of humps of the steady interfacial 
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pattern. This feature of the QM induced flow differs from the LM flow whenever the 
former admits a steady state (e.g. when the bottom temperature vanes periodically 
(Tan et al. 1990)). The complexity of the QM induced pattern is due to the non- 
monotone behaviour of surface tension. Specifically, in QM flow the location of 
stagnation points usually differs from the location of the extremal points of the 
interface. On the interface of 2 = Z(TJ lines (corresponding to q5 = (1 -8)/8), the 
surface tension is minimal, the surface shear stresses (proportional to the gradient of 
surface tension on the surface) are directed outward, and induce the flow as shown in 
figure 4. The flow is descending in extremal locations of the interface. It is also found 
that in the convective cells adjacent to the minimal point, the flow is much slower than 
those related to the maximal one. 

Figure 7 shows temporal snapshots of the evolution of the flow field with the 
streamlines and the film interface displayed. Those are typical for the LM and QM 
induced flows when the latter belongs to a monotone branch of the surface tension 
curve r ( T ) ,  181 > 1. Note that these flows do not settle into a steady state and, as 
follows from the kinematic condition, equation (8), the free surface is not a streamline. 
The liquid flows from the thinner part of the film into the thicker one and this 
necessarily leads to amplification of the perturbations and to the rupture of the film. 

4. Summary and concluding remarks 
We have studied the evolution of a thin liquid film due to quadratic Marangoni 

instability found in dilute aqueous alcohol solutions. Exploiting the thinness of the film 
with respect to the characteristic length of perturbations, we derive equation (1 5 )  which 
describes the interfacial evolution of the film. Similarly to the conventional linear 
Marangoni effect, the quadratic Marangoni (QM) effect plays an important role in 
microgravity conditions. Therefore, to stress the differences between these flows we 
consider the quadratic Marangoni effect in the absence of gravity. 

Not surprisingly, a novel modus operandi is found when the temperature range of 
the film centres around the temperature corresponding to a dip in surface tension. 
While in the conventional case the theory predicts that the film will always rupture, 
here we find stable steady states with perfectly continuous interfaces evolving out of 
arbitrary small initial perturbations of the interface. When the temperature range of 
the film is wholly contained in either of the monotone parts of the a(T)  (surface- 
tension-temperature) curve, the emerging patterns tend to be qualitatively similar to 
those observed in the conventional, linear, Marangoni case. In particular, in this 
regime we do observe the formation of separate drops. Naturally, QM induced flows 
have a different stability threshold, there are cases where LM stability (instability) 
implies a QM stability (instability) or vice versa, as well as regimes in which one case 
is only in part embedded in the other. For more details see $3.  

An interesting potential application comes about as follows: since in dilute aqueous 
solution of long-chain alcohol only surface tension has changed without affecting other 
bulk properties of the fluid, one can consider tailoring a desirable a( T )  dependence 
with a particular application (i.e. coating, crystal growth, etc.) in mind wherein 
particular patterns will be induced or precluded. This will be achieved by centring the 
surface tension minimum at a desirable location with respect to the temperature range 
of the film. 
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